SI coherent derived units

SI coherent derived units

An SI derived unit is defined by the product of powers of one or more SI base unit. If a derived unit includes no numerical factor other than one, it is termed a coherent derived unit. The base units and coherent derived units of the SI form a coherent set, designated the set of coherent SI units.

Each physical quantity has only one coherent SI unit, even if this unit can be expressed in different forms by use of special names and symbols. The inverse, however, is not true: in some cases the same SI unit can be used to express the values of several different quantities.

All SI coherent derived units can be defined directly from the SI defining constants.

Coherence

When coherent units are used, equations between the numerical values of quantities take exactly the same form as the equations between the quantities themselves. i.e. If only units from a coherent set are used, conversion factors between units are never required.

The expression for the coherent unit of a derived quantity may be obtained from the dimensional product of that quantity by replacing the symbol for each dimension by the symbol of the corresponding base unit.

Examples of SI coherent derived units
Name Symbol Quantity Base units
square metre m2 area m2
1 \mspace{4mu} \text{m}^2 \mspace{6mu} = \dfrac{(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)^2}{(299 \mspace{4mu} 792 \mspace{4mu} 458)^2} \mspace{6mu} \dfrac{c^2}{{\Delta \nu _{Cs}}^2}\\ \\ \\ 1 \mspace{4mu} \text{m}^2 \mspace{6mu} \approx 9.402 \mspace{4mu} 391 \mspace{4mu} 313 \mspace{4mu} 904 \mspace{4mu} 046 \mspace{4mu} 861 \times10^{2} \mspace{6mu} c^2 \mspace{4mu} {\Delta \nu _{Cs}}^{-2}
cubic metre m3 volume m3
1 \mspace{4mu} \text{m}^3 \mspace{6mu} = \dfrac{(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)^3}{(299 \mspace{4mu} 792 \mspace{4mu} 458)^3} \mspace{6mu} \dfrac{c^3}{{\Delta \nu _{Cs}}^3}\\ \\ \\ 1 \mspace{4mu} \text{m}^3 \mspace{6mu} \approx 2.883 \mspace{4mu} 085 \mspace{4mu} 241 \mspace{4mu} 129 \mspace{4mu} 260 \mspace{4mu} 961 \times10^{4} \mspace{6mu} c^3 \mspace{4mu} {\Delta \nu _{Cs}}^{-3}
metre per second m/s speed, velocity m s-1
1 \mspace{4mu} \text{m} \mspace{4mu} \text{s}^{-1} \mspace{6mu} = \dfrac{1}{299 \mspace{4mu} 792 \mspace{4mu} 458} \mspace{6mu} c\\ \\ \\ 1 \mspace{4mu} \text{m} \mspace{4mu} \text{s}^{-1} \mspace{6mu} \approx 3.335 \mspace{4mu} 640 \mspace{4mu} 951 \mspace{4mu} 981 \mspace{4mu} 520 \mspace{4mu} 496 \times10^{-9} \mspace{6mu} c
metre per second squared m s-2 acceleration m s-2
1 \mspace{4mu} \text{m} \mspace{4mu} \text{s}^{-2} \mspace{6mu} = \dfrac{1}{(299 \mspace{4mu} 792 \mspace{4mu} 458)(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)} \mspace{6mu} c \mspace{4mu} \Delta \nu _{Cs}\\ \\ \\ 1 \mspace{4mu} \text{m} \mspace{4mu} \text{s}^{-2} \mspace{6mu} \approx 3.628 \mspace{4mu} 602 \mspace{4mu} 815 \mspace{4mu} 210 \mspace{4mu} 469 \mspace{4mu} 913 \times10^{-19} \mspace{6mu} c \mspace{4mu} \Delta \nu _{Cs}
cubic metre per second m3 s-1 volumetric flow rate m3 s−1
1 \mspace{4mu} \text{m}^3 \mspace{4mu} \text{s}^{-1} \mspace{6mu} = \dfrac{(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)^2}{(299 \mspace{4mu} 792 \mspace{4mu} 458)^3} \mspace{6mu} \dfrac{c^3}{{\Delta \nu _{Cs}}^2}\\ \\ \\ 1 \mspace{4mu} \text{m}^3 \mspace{4mu} \text{s}^{-1} \mspace{6mu} \approx 3.136 \mspace{4mu} 300 \mspace{4mu} 151 \mspace{4mu} 321 \mspace{4mu} 367 \mspace{4mu} 418 \times10^{-6} \mspace{6mu} c^3 \mspace{4mu} {\Delta \nu _{Cs}}^{-2}
reciprocal metre m-1 wavenumber m−1
1 \mspace{4mu} \text{m}^{-1} \mspace{6mu} = \dfrac{299 \mspace{4mu} 792 \mspace{4mu} 458}{9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770} \mspace{6mu} \dfrac{\Delta \nu _{Cs}}{c}\\ \\ \\ 1 \mspace{4mu} \text{m}^{-1} \mspace{6mu} \approx 3.261 \mspace{4mu} 225 \mspace{4mu} 571 \mspace{4mu} 749 \mspace{4mu} 405 \mspace{4mu} 557 \times10^{-2} \mspace{6mu} c^{-1} \mspace{4mu} \Delta \nu _{Cs}
kilogram per cubic metre kg m−3 density, mass concentration kg m−3
1 \mspace{4mu} \text{kg} \mspace{4mu} \text{m}^{-3} \mspace{6mu} = \dfrac{(299 \mspace{4mu} 792 \mspace{4mu} 458)^5}{(6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34})(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)^4} \mspace{6mu} \dfrac{h \mspace{4mu} {\Delta \nu _{Cs}}^4}{c^5}\\ \\ \\ 1 \mspace{4mu} \text{kg} \mspace{4mu} \text{m}^{-3} \mspace{6mu} \approx 5.117 \mspace{4mu} 855 \mspace{4mu} 617 \mspace{4mu} 606 \mspace{4mu} 822 \mspace{4mu} 686 \times10^{35} \mspace{6mu} h \mspace{4mu} c^{-5} \mspace{4mu} {\Delta \nu _{Cs}}^4
kilogram per square metre kg m−2 surface density kg m−2
1 \mspace{4mu} \text{kg} \mspace{4mu} \text{m}^{-2} \mspace{6mu} = \dfrac{(299 \mspace{4mu} 792 \mspace{4mu} 458)^4}{(6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34})(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)^3} \mspace{6mu} \dfrac{h \mspace{4mu} {\Delta \nu _{Cs}}^3}{c^4}\\ \\ \\ 1 \mspace{4mu} \text{kg} \mspace{4mu} \text{m}^{-2} \mspace{6mu} \approx 1.569 \mspace{4mu} 304 \mspace{4mu} 393 \mspace{4mu} 397 \mspace{4mu} 563 \mspace{4mu} 377 \times10^{37} \mspace{6mu} h \mspace{4mu} c^{-4} \mspace{4mu} {\Delta \nu _{Cs}}^3
cubic metre per kilogram kg−1 m3 specific volume kg−1 m3
1 \mspace{4mu} \text{kg}^{-1} \mspace{4mu} \text{m}^3 \mspace{6mu} = \dfrac{(6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34})(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)^4}{(299 \mspace{4mu} 792 \mspace{4mu} 458)^5} \mspace{6mu} \dfrac{c^5}{h \mspace{4mu} {\Delta \nu _{Cs}}^4}\\ \\ \\ 1 \mspace{4mu} \text{kg}^{-1} \mspace{4mu} \text{m}^3 \mspace{6mu} \approx 1.953 \mspace{4mu} 943 \mspace{4mu} 359 \mspace{4mu} 714 \mspace{4mu} 421 \mspace{4mu} 354 \times10^{-36} \mspace{6mu} h^{-1} \mspace{4mu} c^5 \mspace{4mu} {\Delta \nu _{Cs}}^{-4}
kilogram metre per second kg m s−1 momentum kg m s−1
1 \mspace{4mu} \text{kg} \mspace{4mu} \text{m} \mspace{4mu} \text{s}^{-1} \mspace{6mu} = \dfrac{299 \mspace{4mu} 792 \mspace{4mu} 458}{(6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34})(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)} \mspace{6mu} \dfrac{h \mspace{4mu} \Delta \nu _{Cs}}{c}\\ \\ \\ 1 \mspace{4mu} \text{kg} \mspace{4mu} \text{m} \mspace{4mu} \text{s}^{-1} \mspace{6mu} \approx 4.921 \mspace{4mu} 809 \mspace{4mu} 606 \mspace{4mu} 482 \mspace{4mu} 064 \mspace{4mu} 722 \times10^{31} \mspace{6mu} h \mspace{4mu} c^{-1} \mspace{4mu} \Delta \nu _{Cs}
kilogram metre squared per second kg m2 s−1 angular momentum kg m2 s−1
1 \mspace{4mu} \text{kg} \mspace{4mu} \text{m}^2 \mspace{4mu} \text{s}^{-1} \mspace{6mu} = \dfrac{1}{6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34}} \mspace{6mu} h\\ \\ \\ 1 \mspace{4mu} \text{kg} \mspace{4mu} \text{m}^2 \mspace{4mu} \text{s}^{-1} \mspace{6mu} \approx 1.509 \mspace{4mu} 190 \mspace{4mu} 179 \mspace{4mu} 642 \mspace{4mu} 151 \mspace{4mu} 842 \times10^{33} \mspace{6mu} h
ampere per square metre m−2 A current density m−2 A
1 \mspace{4mu} \text{m}^{-2} \mspace{4mu} \text{A} \mspace{6mu} = \dfrac{(299 \mspace{4mu} 792 \mspace{4mu} 458)^2}{(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)^3(1.602 \mspace{4mu} 176 \mspace{4mu} 634 \times 10^{-19})} \mspace{6mu} \dfrac{{\Delta \nu _{Cs}}^3 \mspace{4mu} e}{c^2}\\ \\ \\ 1 \mspace{4mu} \text{m}^{-2} \mspace{4mu} \text{A} \mspace{6mu} \approx 7.221 \mspace{4mu} 234 \mspace{4mu} 035 \mspace{4mu} 654 \mspace{4mu} 436 \mspace{4mu} 424 \times10^{5} \mspace{6mu} c^{-2} \mspace{4mu} {\Delta \nu _{Cs}}^3 \mspace{4mu} e
ampere per metre m−1 A magnetic field strength m−1 A
1 \mspace{4mu} \text{m}^{-1} \mspace{4mu} \text{A} \mspace{6mu} = \dfrac{299 \mspace{4mu} 792 \mspace{4mu} 458}{(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)^2(1.602 \mspace{4mu} 176 \mspace{4mu} 634 \times 10^{-19})} \mspace{6mu} \dfrac{{\Delta \nu _{Cs}}^2 \mspace{4mu} e}{c}\\ \\ \\ 1 \mspace{4mu} \text{m}^{-1} \mspace{4mu} \text{A} \mspace{6mu} \approx 2.214 \mspace{4mu} 270 \mspace{4mu} 027 \mspace{4mu} 258 \mspace{4mu} 733 \mspace{4mu} 941 \times10^{7} \mspace{6mu} c^{-1} \mspace{4mu} {\Delta \nu _{Cs}}^2 \mspace{4mu} e
mole per cubic metre m−3 mol amount concentration, concentration m−3 mol
1 \mspace{4mu} \text{m}^{-3} \mspace{4mu} \text{mol} \mspace{6mu} = \dfrac{(299 \mspace{4mu} 792 \mspace{4mu} 458)^3(6.022 \mspace{4mu} 140 \mspace{4mu} 76 \times 10^{23})}{(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)^3} \mspace{6mu} \dfrac{{\Delta \nu _{Cs}}^3}{c^3 \mspace{4mu} N_A}\\ \\ \\ 1 \mspace{4mu} \text{m}^{-3} \mspace{4mu} \text{mol} \mspace{6mu} \approx 2.088 \mspace{4mu} 783 \mspace{4mu} 458 \mspace{4mu} 112 \mspace{4mu} 816 \mspace{4mu} 111 \times10^{19} \mspace{6mu} c^{-3} \mspace{4mu} {\Delta \nu _{Cs}}^3 \mspace{4mu} {N_A}^{-1}
candela per square metre m−2 cd luminance m−2 cd
1 \mspace{4mu} \text{m}^{-2} \mspace{4mu} \text{cd} \mspace{6mu} = \dfrac{(299 \mspace{4mu} 792 \mspace{4mu} 458)^2}{(6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34})(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)^4(683)} \mspace{6mu} \dfrac{h \mspace{4mu} {\Delta \nu _{Cs}}^4 \mspace{4mu} K_{cd}}{c^2}\\ \\ \\ 1 \mspace{4mu} \text{m}^{-2} \mspace{4mu} \text{cd} \mspace{6mu} \approx 2.781 \mspace{4mu} 027 \mspace{4mu} 075 \mspace{4mu} 972 \mspace{4mu} 537 \mspace{4mu} 548 \times10^{7} \mspace{6mu} h \mspace{4mu} c^{-2} \mspace{4mu} {\Delta \nu _{Cs}}^4 \mspace{4mu} K_{cd}