SI coherent derived units with special names and symbols

SI coherent derived units with special names and symbols

Coherent derived units are products of powers of base units that include no numerical factor other than one. The base units and coherent derived units of the SI form a coherent set, designated the set of coherent SI units.

All SI coherent derived units can be defined directly from the SI defining constants.

To simplify their expression, 22 coherent derived units in the SI have been given special names.

SI coherent derived units with special names and symbols
Name Symbol Quantity Base units
hertz Hz frequency s-1
1 \mspace{4mu} \text{Hz} \mspace{6mu} = \dfrac{1}{9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770} \mspace{6mu} \Delta \nu _{Cs}\\ \\ \\ 1 \mspace{4mu} \text{Hz} \mspace{6mu} \approx 1.087 \mspace{4mu} 827 \mspace{4mu} 757 \mspace{4mu} 077 \mspace{4mu} 666 \mspace{4mu} 563 \times10^{-10} \mspace{6mu} \Delta \nu _{Cs}
radian rad plane angle m/m
1 \mspace{4mu} \text{rad} \mspace{6mu} = \text{the angle subtended at the}\\ \text{centre of a circle of radius} \mspace{6mu} r\\ \text{by an arc of length} \mspace{6mu} s = r
steradian sr solid angle m2/m2
1 \mspace{4mu} \text{sr} \mspace{6mu} = \text{the solid angle subtended at the}\\ \text{centre of a sphere of radius} \mspace{6mu} r\\ \text{by any portion of its surface}\\ \text{with area} \mspace{6mu} A = r^2
newton N force kg m s-2
1 \mspace{4mu} \text{N} \mspace{6mu} = \dfrac{299 \mspace{4mu} 792 \mspace{4mu} 458}{(6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34})(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)^2} \mspace{6mu} \dfrac{h \mspace{4mu} {\Delta \nu _{Cs}}^2}{c}\\ \\ \\ 1 \mspace{4mu} \text{N} \mspace{6mu} \approx 5.354 \mspace{4mu} 081 \mspace{4mu} 104 \mspace{4mu} 982 \mspace{4mu} 697 \mspace{4mu} 161 \times10^{21} \mspace{6mu} h \mspace{4mu} c^{-1} \mspace{4mu} {\Delta \nu _{Cs}}^2
pascal Pa pressure kg m−1 s−2
1 \mspace{4mu} \text{Pa} \mspace{6mu} = \dfrac{(299 \mspace{4mu} 792 \mspace{4mu} 458)^3}{(6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34})(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)^4} \mspace{6mu} \dfrac{h \mspace{4mu} {\Delta \nu _{Cs}}^4}{c^3}\\ \\ \\ 1 \mspace{4mu} \text{Pa} \mspace{6mu} \approx 5.694 \mspace{4mu} 382 \mspace{4mu} 339 \mspace{4mu} 804 \mspace{4mu} 557 \mspace{4mu} 242 \times10^{18} \mspace{6mu} h \mspace{4mu} c^{-3} \mspace{4mu} {\Delta \nu _{Cs}}^4
joule J energy kg m2 s−2
1 \mspace{4mu} \text{J} \mspace{6mu} = \dfrac{1}{(6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34})(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)} \mspace{6mu} h \mspace{4mu} \Delta \nu _{Cs}\\ \\ \\ 1 \mspace{4mu} \text{J} \mspace{6mu} \approx 1.641 \mspace{4mu} 738 \mspace{4mu} 968 \mspace{4mu} 123 \mspace{4mu} 762 \mspace{4mu} 714 \times10^{23} \mspace{6mu} h \mspace{4mu} \Delta \nu _{Cs}
watt W power kg m2 s-3
1 \mspace{4mu} \text{W} \mspace{6mu} = \dfrac{1}{(6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34})(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)^2} \mspace{6mu} h \mspace{4mu} {\Delta \nu _{Cs}}^2\\ \\ \\ 1 \mspace{4mu} \text{W} \mspace{6mu} \approx 1.785 \mspace{4mu} 929 \mspace{4mu} 219 \mspace{4mu} 401 \mspace{4mu} 075 \mspace{4mu} 514 \times10^{13} \mspace{6mu} h \mspace{4mu} {\Delta \nu _{Cs}}^2
coulomb C electric charge s A
1 \mspace{4mu} \text{C} \mspace{6mu} = \dfrac{1}{1.602 \mspace{4mu} 176 \mspace{4mu} 634 \times 10^{-19}} \mspace{6mu} e\\ \\ \\ 1 \mspace{4mu} \text{C} \mspace{6mu} \approx 6.241 \mspace{4mu} 509 \mspace{4mu} 074 \mspace{4mu} 460 \mspace{4mu} 762 \mspace{4mu} 608 \times10^{18} \mspace{6mu} e
volt V potential difference kg m2 s−3 A-1
1 \mspace{4mu} \text{V} \mspace{6mu} = \dfrac{1.602 \mspace{4mu} 176 \mspace{4mu} 634 \times 10^{-19}}{(6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34})(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)} \mspace{6mu} \dfrac{h \mspace{4mu} \Delta \nu _{Cs}}{e}\\ \\ \\ 1 \mspace{4mu} \text{V} \mspace{6mu} \approx 2.630 \mspace{4mu} 355 \mspace{4mu} 813 \mspace{4mu} 855 \mspace{4mu} 163 \mspace{4mu} 441 \times10^{4} \mspace{6mu} h \mspace{4mu} \Delta \nu _{Cs} \mspace{4mu} e^{-1}
farad F capacitance kg-1 m-2 s4 A2
1 \mspace{4mu} \text{F} \mspace{6mu} = \dfrac{(6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34})(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)}{(1.602 \mspace{4mu} 176 \mspace{4mu} 634 \times 10^{-19})^2} \mspace{6mu} \dfrac{e^2}{h \mspace{4mu} \Delta \nu _{Cs}}\\ \\ \\ 1 \mspace{4mu} \text{F} \mspace{6mu} \approx 2.372 \mspace{4mu} 876 \mspace{4mu} 339 \mspace{4mu} 232 \mspace{4mu} 955 \mspace{4mu} 900 \times10^{14} \mspace{6mu} h^{-1} \mspace{4mu} {\Delta \nu _{Cs}}^{-1} \mspace{4mu} e^2
ohm Ω electrical resistance kg m2 s−3 A-2
1 \mspace{4mu} \Omega \mspace{6mu} = \dfrac{(1.602 \mspace{4mu} 176 \mspace{4mu} 634 \times 10^{-19})^2}{6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34}} \mspace{6mu} \dfrac{h}{e^2}\\ \\ \\ 1 \mspace{4mu} \Omega \mspace{6mu} \approx 3.874 \mspace{4mu} 045 \mspace{4mu} 864 \mspace{4mu} 931 \mspace{4mu} 825 \mspace{4mu} 323 \times10^{-5} \mspace{6mu} h \mspace{4mu} e^{-2}
siemens S electrical conductance kg-1 m-2 s3 A2
1 \mspace{4mu} \text{S} \mspace{6mu} = \dfrac{6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34}}{(1.602 \mspace{4mu} 176 \mspace{4mu} 634 \times 10^{-19})^2} \mspace{6mu} \dfrac{e^2}{h}\\ \\ \\ 1 \mspace{4mu} \text{S} \mspace{6mu} \approx 2.581 \mspace{4mu} 280 \mspace{4mu} 745 \mspace{4mu} 930 \mspace{4mu} 450 \mspace{4mu} 666 \times10^{4} \mspace{6mu} h^{-1} \mspace{4mu} e^2
weber Wb magnetic flux kg m2 s−2 A-1
1 \mspace{4mu} \text{Wb} \mspace{6mu} = \dfrac{1.602 \mspace{4mu} 176 \mspace{4mu} 634 \times 10^{-19}}{6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34}} \mspace{6mu} \dfrac{h}{e}\\ \\ \\ 1 \mspace{4mu} \text{Wb} \mspace{6mu} \approx 2.417 \mspace{4mu} 989 \mspace{4mu} 242 \mspace{4mu} 084 \mspace{4mu} 918 \mspace{4mu} 162 \times10^{14} \mspace{6mu} h \mspace{4mu} e^{-1}
tesla T magnetic flux density kg s−2 A-1
1 \mspace{4mu} \text{T} \mspace{6mu} = \dfrac{(299 \mspace{4mu} 792 \mspace{4mu} 458)^2(1.602 \mspace{4mu} 176 \mspace{4mu} 634 \times 10^{-19})}{(6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34})(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)^2} \mspace{6mu} \dfrac{h \mspace{4mu} {\Delta \nu _{Cs}}^2}{c^2 \mspace{4mu} e}\\ \\ \\ 1 \mspace{4mu} \text{T} \mspace{6mu} \approx 2.571 \mspace{4mu} 674 \mspace{4mu} 759 \mspace{4mu} 493 \mspace{4mu} 629 \mspace{4mu} 589 \times10^{11} \mspace{6mu} h \mspace{4mu} c^{-2} \mspace{4mu} {\Delta \nu _{Cs}}^2 \mspace{4mu} e^{-1}
henry H inductance kg m2 s−2 A-2
1 \mspace{4mu} \text{H} \mspace{6mu} = \dfrac{(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)(1.602 \mspace{4mu} 176 \mspace{4mu} 634 \times 10^{-19})^2}{6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34}} \mspace{6mu} \dfrac{h}{\Delta \nu _{Cs} \mspace{4mu} e^2}\\ \\ \\ 1 \mspace{4mu} \text{H} \mspace{6mu} \approx 3.561 \mspace{4mu} 267 \mspace{4mu} 709 \mspace{4mu} 640 \mspace{4mu} 942 \mspace{4mu} 635 \times10^{5} \mspace{6mu} h \mspace{4mu} {\Delta \nu _{Cs}}^{-1} \mspace{4mu} e^{-2}
degree Celsius °C Celsius temperature K
1 \mspace{4mu} ^\circ \text{C} \mspace{6mu} = \dfrac{1.380 \mspace{4mu} 649 \times 10^{-23}}{(6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34})(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)} \mspace{6mu} \dfrac{h \mspace{4mu} \Delta \nu _{Cs}}{k}\\ \\ \\ 1 \mspace{4mu} ^\circ \text{C} \mspace{6mu} \approx 2.266 \mspace{4mu} 665 \mspace{4mu} 264 \mspace{4mu} 601 \mspace{4mu} 104 \mspace{4mu} 867 \mspace{6mu} h \mspace{4mu} \Delta \nu _{Cs} \mspace{4mu} k^{-1}
lumen lm luminous flux cd
1 \mspace{4mu} \text{lm} \mspace{6mu} = \dfrac{1}{(6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34})(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)^2(683)} \mspace{6mu} h \mspace{4mu} {\Delta \nu _{Cs}}^2 \mspace{4mu} K_{cd}\\ \\ \\ 1 \mspace{4mu} \text{lm} \mspace{6mu} \approx 2.614 \mspace{4mu} 830 \mspace{4mu} 482 \mspace{4mu} 285 \mspace{4mu} 615 \mspace{4mu} 686 \times10^{10} \mspace{6mu} h \mspace{4mu} {\Delta \nu _{Cs}}^2 \mspace{4mu} K_{cd}
lux lx illuminance m-2 cd
1 \mspace{4mu} \text{lx} \mspace{6mu} = \dfrac{(299 \mspace{4mu} 792 \mspace{4mu} 458)^2}{(6.626 \mspace{4mu} 070 \mspace{4mu} 15 \times 10^{-34})(9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770)^4(683)} \mspace{6mu} \dfrac{h \mspace{4mu} {\Delta \nu _{Cs}}^4 \mspace{4mu} K_{cd}}{c^2}\\ \\ \\ 1 \mspace{4mu} \text{lx} \mspace{6mu} \approx 2.781 \mspace{4mu} 027 \mspace{4mu} 075 \mspace{4mu} 972 \mspace{4mu} 537 \mspace{4mu} 548 \times10^{7} \mspace{6mu} h \mspace{4mu} c^{-2} \mspace{4mu} {\Delta \nu _{Cs}}^4 \mspace{4mu} K_{cd}
becquerel Bq radionuclide activity s-1
1 \mspace{4mu} \text{Bq} \mspace{6mu} = \dfrac{1}{9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770} \mspace{6mu} \Delta \nu _{Cs}\\ \\ \\ 1 \mspace{4mu} \text{Bq} \mspace{6mu} \approx 1.087 \mspace{4mu} 827 \mspace{4mu} 757 \mspace{4mu} 077 \mspace{4mu} 666 \mspace{4mu} 563 \times10^{-10} \mspace{6mu} \Delta \nu _{Cs}
gray Gy absorbed dose m2 s−2
1 \mspace{4mu} \text{Gy} \mspace{6mu} = \dfrac{1}{(299 \mspace{4mu} 792 \mspace{4mu} 458)^2} \mspace{6mu} c^2\\ \\ \\ 1 \mspace{4mu} \text{Gy} \mspace{6mu} \approx 1.112 \mspace{4mu} 650 \mspace{4mu} 056 \mspace{4mu} 053 \mspace{4mu} 618 \mspace{4mu} 432 \times10^{-17} \mspace{6mu} c^2
sievert Sv dose equivalent m2 s−2
1 \mspace{4mu} \text{Sv} \mspace{6mu} = \dfrac{1}{(299 \mspace{4mu} 792 \mspace{4mu} 458)^2} \mspace{6mu} c^2\\ \\ \\ 1 \mspace{4mu} \text{Sv} \mspace{6mu} \approx 1.112 \mspace{4mu} 650 \mspace{4mu} 056 \mspace{4mu} 053 \mspace{4mu} 618 \mspace{4mu} 432 \times10^{-17} \mspace{6mu} c^2
katal kat catalytic activity s−1 mol
1 \mspace{4mu} \text{kat} \mspace{6mu} = \dfrac{6.022 \mspace{4mu} 140 \mspace{4mu} 76 \times 10^{23}}{9 \mspace{4mu} 192 \mspace{4mu} 631 \mspace{4mu} 770} \mspace{6mu} \dfrac{\Delta \nu _{Cs}}{N_A}\\ \\ \\ 1 \mspace{4mu} \text{kat} \mspace{6mu} \approx 6.551 \mspace{4mu} 051 \mspace{4mu} 875 \mspace{4mu} 756 \mspace{4mu} 794 \mspace{4mu} 292 \times10^{13} \mspace{6mu} \Delta \nu _{Cs} \mspace{4mu} {N_A}^{-1}

All SI coherent derived units can be defined in terms of products of powers of the seven SI base units, or more directly in terms of products of powers of the seven SI defining constants and a dimensionless scaling factor.